Course Code ESE-812	Credit Hours (Th-Pr) 3.0-0	Energy Management in Buildings (Elective)	Contact Hrs/Week (Th-Pr) 3-0	Total Contact Hrs (Th-Pr) 45-0
---------------------------	-------------------------------------	--	---------------------------------------	---

Course Outline:

Overview of the significance of energy use and energy processes in buildings; indoor environmental requirements and management; climate, solar radiation, the external influences, and the shape and orientation of buildings; lighting, daylighting and airconditioning; end-use energy requirements and status of energy use; estimation of energy use in a building; heat gains and thermal performance of building envelope; energy audit and energy conservation; energy management options.

<u>Eligibility Criteria:</u> B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

Recommended Books:

S. No.	Title	Author(s)	Assigned	Remark
			Code	S
1.	Heating and Cooling of	J. Krieder, and A. Rabl	KR	Text
	Buildings: Design for			
	Efficiency			
2.	Energy Management in Buildings	Keith J. Moss	MK	Text
3.	Energy Management and Operating Costs in Buildings	Keith J. Moss	МК	Referen ce
4	Energy Design for Architects	Alexander Shaw	AS	Referen ce
5	Mechanical and Electrical	S. M. Guinnes, and	GR	Referen
	Equipment for Buildings	Reynolds		се

Course Objectives:

To enable essential but practical understanding of the energy processes in buildings. The course covers the external and internal energy processes in the control of the built environment. It also examines emerging technologies for energy management.

Learning outcome:

Identification of primary sources of energy loss in buildings. Conservation measures undertaken to mitigate these losses. Design of efficient energy buildings will be the natural outcome of this course. Intelligent building design based on smart devices such as solar windows, coatings, optimal use of insulation and least cost HVAC load calculations are given due attention.

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1.	Overview of the Significance of Energy Use and Energy	KR	4
	Processes in Building	&MK	
	1. Indoor Activities and Environmental Control		
	2. Internal and External Factors on Energy Use and the		
	Attributes of the Factors		
	3. Characteristics of Energy Use and Its Management		
	4. Macro Aspect of Energy Use in Dwellings and Its		
	Implications		
2.	Indoor Environmental Requirement and Management	KR	6
	1. Thermal Comfort	&MK	
	2. Ventilation and Air Quality		
	3. Air-conditioning Requirement		
	4. Visual Perception, Illumination Requirement		
	5. Auditory Requirement		
3.	Climate, Solar Radiation and Their Influences	KR	6
	1. The Sun-earth Relationship and the Energy Balance on	&MK	
	the Earth's Surface		

	2. Climate, Wind, Solar Radiation, and Temperature		
	3. Sun Shading and Solar Radiation on Surfaces		
	4. Energy Impact on the Shape and Orientation of Buildings		
4.	End-use Energy Utilization and Requirements	KR	6
	1. Lighting and Daylighting	&MK	
	2. End-use Energy Requirements		
	3. Status of Energy use in Buildings		
	4. Estimation of Energy Use in a Building		
5.	Heat Gain and Thermal Performance of Building	KR	4
	Envelope	&MK	
	1. Steady and Nonsteady Heat Transfer Through the Glazed		
	Window and the Wall		
	2. Standards for Thermal Performance of Building Envelope		
	3. Evaluation of the Overall Thermal Transfer		
6.	Non-Steady Heat and Moisture Gain through Building	KR	4
	Envelope	&MK	
	1. Single and Multi-Dimensional Problems		
	2. Transfer Function and Finite-Difference Solution		
	3. Energy Balance Concept and its Implementation		
7.	Technologies for Low Energy Buildings	KR	4
	1. Application of Radiant Barriers With other Building	&MK	
	Materials		
	2. Solar-Generated Desiccant Dehumidification for		
	Ventilation		
	3. Radiant Panel Cooling		
	4. Natural and Active Cooling with Adaptive Comfort		
	5. Daylighting Application		
8	Heat Gain Through Window	KR	4
	1. Solar Radiation Transmission through Complex	&MK	
	Fenestration System		
	2. Thermal Gain and Net Heat Gain		
	3. Methods of Control		
9	Dynamic Air-Conditioning Load	KR	4
3	- j	I	

	Source by Air		
	2. Cooling Coil Load and Air-Conditioning Load		
10	Energy Prediction	KR	3
	1. Prediction of Energy Use by Simple Indicators and by	&MK	
	Building Energy Simulation		
	2. Application of Neural Network for Energy Prediction		